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Western US snowpack—snow that accumulates on the ground in
the mountains—plays a critical role in regional hydroclimate and
water supply, with 80% of snowmelt runoff being used for agricul-
ture. While climate projections provide estimates of snowpack loss
by the end of the century and weather forecasts provide predictions
of weather conditions out to 2 weeks, less progress has been made
for snow predictions at seasonal timescales (months to 2 years),
crucial for regional agricultural decisions (e.g., plant choice and
quantity). Seasonal predictions with climate models first took the
form of El Niño predictions 3 decades ago, with hydroclimate pre-
dictions emerging more recently. While the field has been focused
on single-season predictions (3 months or less), we are now poised
to advance our predictions beyond this timeframe. Utilizing obser-
vations, climate indices, and a suite of global climate models, we
demonstrate the feasibility of seasonal snowpack predictions and
quantify the limits of predictive skill 8 months in advance. This phys-
ically based dynamic system outperforms observation-based statis-
tical predictions made on July 1 for March snowpack everywhere
except the southern Sierra Nevada, a region where prediction skill is
nonexistent for every predictor presently tested. Additionally, in the
absence of externally forced negative trends in snowpack, narrow
maritime mountain ranges with high hydroclimate variability pose a
challenge for seasonal prediction in our present system; natural snow-
pack variability may inherently be unpredictable at this timescale.
This work highlights present prediction system successes and
gives cause for optimism for developing seasonal predictions for
societal needs.
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The majority of annual precipitation in the western United
States (WUS) accumulates between October and April, falling

as snow in the mountains (1). As a result, snow accumulation forms
mountain snowpack, peaking in early spring and melting into
the summer, dominating runoff and influencing lower-elevation
streamflow (2). WUS mountain snowpack therefore provides a
natural reservoir for winter precipitation, as it supplies snowmelt
runoff when temperatures are above freezing and regional pre-
cipitation is otherwise scarce from late spring through fall (3, 4).
Springtime snowpack has been observed to have reduced in the

last century (5, 6) and recently reached an unprecedented low (7),
altering the timing of regional runoff, creating competing demands
for water use (8), stressing ecology (8, 9), and increasing the risk of
wildfire (10). Seasonal climate predictions would therefore be of
great societal relevance to agriculture, water managers, and policy
makers to plan for annual climate deviations.
Previous work exploring seasonal prediction in global climate

models has focused on the El Niño−Southern Oscillation (ENSO)
(11), total precipitation (12), and temperature (13); snowpack
prediction has not been a primary focus. Knowing future pre-
cipitation or temperature alone is, unfortunately, insufficient for
snowpack prediction; for example, knowing it will be a wet year
does not guarantee a large spring snowpack if temperatures are
above freezing. Previous work has quantified the multiseasonal
(November–March) covariance of observed WUS snowpack point

measurements and climate indices for ENSO (14–17), Pacific
Decadal Oscillation (PDO) (14, 18), the Pacific−North American
(PNA) circulation pattern (17, 19), and the Madden−Julian Os-
cillation (MJO) (20). These climate indices explain limited vari-
ance and do not cohesively explain WUS snowpack (14, 16).
Moreover, the links between climate indices and snowpack have
been made with averaged seasonal indices, identifying the co-
variance of index values over several months through March with
April snowpack values, rendering them inapplicable for multi-
month out-of-season predictive applications (14–19). The rela-
tively short instantaneous snowpack measurement record (<40 y)
(5) also complicates our ability to predict WUS snowpack from
observations alone, particularly extremes, given the sample size (21).
Advancements in understanding subseasonal to single-season

(≤3 mo) hydroclimate prediction and variability have been made,
but should not be extrapolated to an expectation of multi-
seasonal predictive skill. For example, certain phases of the MJO
have been linked to atmospheric rivers and snowpack accumu-
lation over California (20), but only in specific phases of the
MJO, with atmospheric rivers climatologically only accounting
for 30 to 40% of snowpack accumulation in California (22).
Statistical and dynamical models also have no demonstrated pre-
diction skill for the MJO beyond a 2- to 4-wk lead time (23, 24).
Understanding the role of the MJO is important for advancing the
understanding of extreme precipitation in California, even if it does
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not provide seasonal prediction skill on a consistent basis (e.g., for
other MJO phases), for the WUS as a whole, or on longer timescales
(23, 24). More generally, multiseasonal prediction skill is a different
scientific question than single-season prediction. As the ocean and
climate states evolve, predictions become less dependent on knowing
the atmospheric initial climate state for prediction (why statistics are
successful at shorter timescales) and transition to being based on
oceanic and radiative boundary conditions and the ability to predict
the evolution of climate (25).
In this study, we highlight seasonal 8-mo-lead predictions ini-

tialized on July 1 for March WUS snowpack from three atmo-
sphere−ocean general circulation models (AOGCM) developed at
the Geophysical Fluid Dynamics Laboratory (GFDL). The three
AOGCMs share a similar ocean, but differ in their horizontal
atmospheric/land resolutions (200, 50, and 25 km; refs. 26−28),
resulting in increasing orographic fidelity (SI Appendix, Fig. S1).
AOGCM multimember ensemble hindcasts (10 for 200 km, and
12 for 50 and 25 km) following refs. 13 and 28 were initialized by
data assimilation of the ocean (29) with land states from clima-
tology (see Materials and Methods) on July 1 of every year (1980–
2015). Starting from these July 1 initial conditions, the dynamical
model then predicted the evolution of the climate system over the
following year, allowing us to assess predicted snowpack values for
the following March (1981–2016). Results utilize ensemble mean
predictions except where noted. Statistical models are also tested
by using observed climate indices available on July 1 to contrast our
dynamical AOGCM predictions. The dynamical physical models
and statistical models are verified against snow water equivalent
(SWE) observations and reanalysis.

Prediction Skill for March Snowpack Using Initial Conditions
from July of the Prior Year
Fig. 1 shows the ability of the AOGCMs to reproduce average
March snowpack. This multiresolution modeling framework
clearly illustrates the role of horizontal resolution for improving
simulation of snowpack climatology (Fig. 1). At 200 km, moun-
tains are smooth and low (SI Appendix, Fig. S1), resulting in
minimal SWE confined to the interior continent (30). At 50 and
25 km, the models reproduce finer-scale maritime mountain
features with SWE values approaching observations; snowpack
bias across the WUS decreases with resolution (SI Appendix, Fig.
S2). Biases in the absolute value of snowpack may be limited by
resolution restricting topographic height and therefore snow
accumulation (30). As a result, snowpack anomalies normalized

by regional means provide a relative comparison across resolu-
tions; this metric leads to the WUS normalized anomaly bias
approaching 0 (SI Appendix, Fig. S3).
Fig. 2 provides a case study of the recent 2012–2015 multiyear

southern WUS snowpack drought. All of the AOGCMs roughly
reproduce the observed pattern of anomalously low (high)
snowpack in the southwest (northeast). In this case study using
ensemble mean predictions, the 50-km model appears to per-
form the best, while the 25-km model incorrectly predicts highs
in the southern WUS.
The ability of the modeling suite to reproduce average 1981–

2016 March snowpack and roughly predict the recent snowpack
drought motivates us to further explore prediction skill across the
entire record and all models (both individually and as a suite). Fig.
3 provides regional seasonal prediction metrics; for each mountain
region, the regional averaged AOGCM March snowpack pre-
diction made on July 1 the previous year is correlated with the
observed March snowpack value. The higher-resolution AOGCMs
consistently (both individually and as multimodel means) produce
positive statistically significant correlations across all regions ex-
cept in the southern Sierra Nevada and in Washington State.

Role of Initial Climate State
Seasonal snowpack prediction skill exists in our AOGCM suite
based on the initialization of the ocean (on July 1) and the dy-
namic development of the coupled system (as the AOGCMs
simulate climate through March 31). We therefore contrast our
dynamical AOGCM predictions with static observed statistical
predictions (based on the initial state known at July 1 alone) by
correlating available observed climate indices (ENSO, PNA, and
PDO) at July 1 with the following March snowpack. This also
tests whether indices with known intraseasonal snowpack co-
variance could be used for out-of-season predictions. The PDO
does not have prediction skill in any region, despite demonstrated
correlations at shorter time scales (14, 18). ENSO only has
statistically significant prediction skill in the Northern Rockies,
but with a lower absolute value than the AOGCMs. The PNA
pattern is the only climate index with consistent predictive skill
(Fig. 3), yet it is also an atmospheric index, with expectations for
shorter timescales of persistence and predictability than ocean-based
indices like ENSO (31). Its predictive skill may reflect seasonal
consistency in storm track position through February (32), lending
itself to longer-range seasonal snowpack prediction skill.
The AOGCMs consistently outperform the static statistical

predictions, with the multimodel mean of the higher-resolution
models (mean of the 50- and 25-km model ensemble mean
predictions; Fig. 3, black triangles) generally outperforming in-
dividual model predictions. This suggests that two factors may
enhance skill: (i) the doubling of ensemble members to sample a
greater set of possible solutions or (ii) differences in model
biases found individually in the 50- and 25-km models that are
reduced when combined. The one exception is the southern Sierra
Nevada, where no predictor is statistically significant.

Challenges of the Sierra Nevada
The southern Sierra Nevada is an elongated mountain range
(Fig. 1 and SI Appendix, Fig. S1) with the highest peak in the
contiguous United States, Mount Whitney (4.4 km); this region
may require even higher resolutions than our system to achieve
mountain heights (presently our tallest is 3.4 km in the 25 km
model) for sufficient orographic precipitation and cold temper-
atures for snowpack dynamics. This region is characterized by
narrow and infrequent storms—less than 10 per year, with some
years receiving the majority of snowpack from a single storm (33,
34)—and some of the most variable snowpack (SI Appendix, Figs.
S4 and S5). The higher-resolution models capture the spatial
patterns of interannual variability, but with lower magnitudes
than observed. This high natural variability and bias in the models
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March Snow Water Equivalent (SWE) in cm from 1981-2016

Fig. 1. Mean March snowpack climatology for 1981–2016 at each model
resolution (noted in the column headers). Observations (Bottom) are taken
from snowpack point measurements (Right) and are regridded to native
model grids. Simulated climatology of ensemble mean spring prediction
values from previous July (8 mo in advance; Top) from three GFDL AOGCMs
(described in Materials and Methods). Spatial resolution is coarsest in Left
and finest in Right (200 km is the lowest resolution).
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may make it inherently more difficult to predict Sierra Nevada
snowpack, particularly if the few storms that happen in a year are
shifted outside the defined region.
We attempt to reduce the impact of storm location error by

aggregating the Sierra Nevada, maritime mountains (Sierra
Nevada, Oregon Cascades, Washington State), and the entire
WUS region (Fig. 3B). This allows us to test larger-scale pre-
diction skill and reduces errors caused by spatial differences in
storms shifted across the region as long as they stay within the new
aggregated ranges. Aggregation leads to dynamical predictions

outperforming statistical predictions everywhere. With aggrega-
tion, skill emerges across the combined Sierra Nevada and
maritime mountains.
Given the observed 1981–2016 negative trend in southern

WUS snowpack (SI Appendix, Fig. S6), we quantify whether
these trends affect the predictability of snowpack. Negative sta-
tistically significant snowpack trends have been well documented
since the 1950s and tied to snowmelt occurring earlier in the
season (2, 5) and precipitation falling as rain instead of snow
(35). These observations reflect a regional trend in warming
bringing temperatures above freezing more often and reducing
the snow season length. We repeat our regional analysis for
detrended time series, finding that high correlation values re-
main similar to the original analysis (Fig. 3 and SI Appendix, Fig.
S7). However, the AOGCM snowpack predictions lose statistical
significance over the Sierra Nevada, resulting in a loss of pre-
diction skill in the aggregated maritime mountains despite skill
in Oregon and Washington. Therefore, the predictive skill in the
original analysis found in Fig. 3 for the Sierra Nevada and
maritime mountains came from the models’ ability to reproduce
the trend of Sierra Nevada snowpack loss. This suggests that the
AOGCM system cannot capture the internally forced natural
variability of Sierra Nevada snowpack. We cannot conclude de-
finitively whether this is due to a lack of predictability in the
system or a model deficiency in capturing subgrid-scale oro-
graphic precipitation dynamics in a region where snowfall is
highly sensitive to storm direction and vertical temperature
profiles (i.e., determining transitions between rain and snow) and
trends can vary in elevation (5, 6, 33, 35). For additional verifi-
cation, analysis was also performed with a higher-resolution
snowpack reanalysis product, starting in 1985 (ref. 36 and SI
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Fig. 3. Mountain range snowpack prediction skill measured by correlations (Spearman) between observed March snowpack and predictors available July
1 from AOGCM models (triangles, circles) or climate indices (squares) where higher absolute values represent greater skill, shown for (A) various mountain
ranges and (B) ranges aggregated in increasing scale. Dashed lines provided for the value of the higher-resolution multimodel (50 km and 25 km) prediction
for snowpack over the entire mountainous WUS (0.48) and the negative value (−0.48) to provide a reference for correlations with climate indices. Inset
provided for ranges in highest-resolution model; the 200-km model has no ranges for northern and southern Sierra Nevada, Oregon Cascades, or Arizona and
New Mexico (SI Appendix, Fig. S1).
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March Snow Water Equivalent (SWE) Anomaly: 2012-2015 Normalized by 1981-2016

Fig. 2. As in Fig. 1, observed (Bottom) and ensemble mean simulated
AOGCM March predictions from previous July (Top) of snowpack anomalies
in 2012–2015 relative to 1981–2016 mean. Note that, for simulated plots,
points have been masked for only those with climatological (1981–2016)
simulated SWE greater or equal to 1 cm.
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Appendix, Fig. S8). Raw and detrended correlations with the
Sierra Nevada reanalysis also yield similar prediction skill for the
AOGCM system and climate indices, but with Northern Cal-
ifornia maintaining some skill in the detrended series (SI Ap-
pendix, Fig. S9). This product is highly correlated with our station
estimates (r ≥ 0.95; SI Appendix, Fig. S8) and verifies that the
southern Sierra Nevada is not predictable in our present system.
This shows that there is regional snowpack coherence, and the
station observation network is suited for integrated snowpack
variability estimation.
Presently, we must conclude that Sierra Nevada snowpack is not

predictable at 8-mo lead times in our prediction system without
greenhouse gas forcing. AOGCM seasonal prediction skill of
other phenomena—extratropical storm tracks (32), regional sur-
face air temperature in winter and summer (25), and global sur-
face temperature (37)—has also been linked to climate models’
ability to reproduce the greenhouse gas-forced warming trends.
Generally, these studies show that the otherwise unpredictable
interannual variability of a specific regional climate system can
become predictable in a warming climate. For Sierra Nevada
snowpack, with only a few days of precipitation a year (33, 34)
and a highly variable snowpack (SI Appendix, Figs. S4 and S5),
this is due to prediction skill stemming from seasonal warming
trends, leading to more precipitation falling as rain versus snow
and enhanced snowmelt. Predicting the interannual variability
and extreme years (either low or high snow) is precisely what
decision makers need to prepare for atypical years. More work is
needed with dynamical AOGCMs and observing systems cus-
tomized for the Sierra Nevada and more broadly to California to
(i) enhance regional prediction skill (demonstrated in SI Ap-
pendix, Fig. S9) or (ii) elucidate if longer lead times are un-
attainable due to the nature of Sierra Nevada snowpack. Other
hydroclimate variables may also have better longer-lead pre-
diction skill and should be explored.

Enhancing Seasonal Snowpack Predictions
To identify potential model improvements vis-à-vis mechanisms
affecting snowpack, we also quantify prediction skill in the higher-
resolution models for precipitation, temperature, and storm tracks
(32) (Fig. 4). Precipitation predictive skill is most evident in the
medium-resolution model, with storm tracks tending to follow
precipitation skill. The highest-resolution model has the greatest
skill in temperature in the northeastern WUS, corresponding to the
region where it has greatest skill in snowpack prediction (Fig. 3).
Interestingly in the reproduction of climatology, the AOGCMs
are stormier, wetter, and cooler than observations, with slightly
larger biases in the 25-km model (SI Appendix, Fig. S11). This
may reflect elevation differences between the 25-km model and
observations, as no temperature lapse rate adjustments were made
to model data during the area-averaging regridding process from
25 km to a uniform 50-km grid in Fig. 4 and SI Appendix, Fig. S11.
While climatological spatial bias patterns are similar in both models
(SI Appendix, Fig. S11), the spatial pattern and magnitude of pre-
diction skill in interannual variability is quite different (Fig. 4).
These analyses highlight the difficulty of snowpack prediction:

Individual models may simultaneously differ in predictive
strength and spatial coverage of each individual variable affect-
ing snowpack, without a clear advantage. Additionally, a model’s
ability to reproduce climatology does not necessarily translate to
seasonal prediction skill. In the 20th century, the WUS moun-
tains generally stayed below freezing through February, leading
to March snowpack being heavily dominated by precipitation
variability (5, 6). This favors a system optimized for precipitation
skill. Where temperatures have a greater tendency to be at or
above freezing, temperature skill becomes more important, due
to surface melt and increased likelihood for rainfall. Tempera-
ture has likely become more important during the study record

as temperatures have increased and been anomalously warm
during the multiyear California drought (39).
The southern Sierra Nevada currently eludes snowpack pre-

diction. The outstanding question is whether this is due to in-
herent lack of predictability in the climate system or to errors in
our AOGCM prediction system (e.g., insufficient resolution for
steep mountains, microphysics, or inadequate initialization of the
climate system). To quantify how ensemble members cluster
around a solution (agnostic toward its accuracy), we calculate a
coherence index, omega (40), relating the variance in the en-
semble mean versus the full set of ensembles (SI Appendix, Fig.
S10). Across all AOGCMs, the coherence index is greatest in the
northern WUS. The southern Sierra Nevada, in particular, has
little coherence, with a minimum in the 25-km model. We also
quantify the ability of individual ensemble members to predict the
ensemble mean versus how the ensemble mean predicts observa-
tions from Fig. 3. This test shows that the model predicts itself
better than it predicts observations everywhere except the south-
ern Sierra Nevada and Washington. Reviewing the mechanisms
that lead to ensemble clustering in our AOGCM prediction system
may allow us to improve the prediction of observations every-
where except in these two regions. Again, the southern Sierra
Nevada is highlighted as a challenging area.
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Fig. 4. Skill measured by correlation (Spearman) for temperature (A and B),
precipitation (C and D), and storminess defined by 850-mb wind v-component
following ref. 32 (E and F) between November 1980 and February 2015 from
July 1 initialization versus 0.5° observations. Points without statistical signifi-
cance (P > 0.1) have been masked in white. Note that, unlike other prediction
analyses, this figure provides predictions 4 mo in advance (from July 1 for
November through February) to parse potential sources of predictability of
March snowpack. Precipitation and temperature were downloaded from
the University of East Anglia Climate Research Unit (https://crudata.uea.ac.
uk/cru/data/hrg/). Wind data are from the European Reanalysis Interim
product from the European Centre for Medium-Range Weather Forecasts
(38).
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Discussion
Further lines of inquiry may improve seasonal snowpack pre-
diction skill. We find that resolution enhancement from 200 km
to 50 km does appear to enhance prediction skill. However,
further refinement to 25 km does not markedly improve skill
within this system, despite improvements in simulating mean
March snowpack (Fig. 1) and tropical cyclone prediction (28).
The AOGCM suite was originally developed to test the influence
of resolution enhancement without dramatic changes to physics,
model configuration, or initialization. At higher resolutions over
complex topography, model physics (e.g., microphysics and gravity
wave tuning) may dramatically affect regional precipitation and
circulation, particularly in Southern California (41), requiring the
development of new parameterizations. There is evidence of this
in the climatology biases of variables shown in Fig. 4 being lower
at 50 km than at 25 km (SI Appendix, Fig. S11). Higher-resolution
AOGCMs may also need more ensemble members (Fig. 3, tri-
angles versus circles) to converge on a correct solution (SI Ap-
pendix, Fig. S10), given the scales of atmospheric variability and
increased values of localized precipitation extremes (21). Addi-
tionally, our ocean data assimilation system has not been opti-
mized for higher-resolution atmospheres, is performed with the
200-km version of the model, and does not include atmospheric
initialization with observations in the 50- and 25-km versions of the
system, possibly placing the highest-resolution models at a disad-
vantage (29). This initialization procedure was originally developed
assuming the ocean is the main driver of multiseasonal climate
predictions (42), but this assumption should be tested further.
The nature of WUS snowmelt dominating spring through

summer runoff extends the potential use of snowpack predictions
made in July for water resources through the following summer/
fall. While snowpack prediction skill is highly relevant to water
resource applications and is a necessary step toward hydrologic
prediction, basin-averaged streamflow should ultimately be a
target for future prediction systems and will require land surface
process analysis. We have purposefully dedicated this study to
exploring prediction skill of spring snowpack from the previous
summer, when the land surface lacks snowpack, to explore pre-
diction skill before the first snowfall of the season. Future studies
should also tie shorter lead times to snowpack prediction, but
will require land surface initialization (in addition to the ocean
presented here), as WUS snowpack begins to accumulate during
the fall, and soil moisture becomes more important at shorter
timescales (43). Additionally, testing model skill for multiday
extreme weather events like atmospheric rivers will likely also
be important for prediction at shorter timescales, especially in
the Sierra Nevada (20, 22, 33). This work shows promise for
attaining future seasonal predictions for societal needs and high-
lights the need for increased focus on the narrow maritime
mountains as a challenging prediction problem.

Materials and Methods
Snowpack Observations. Monthly first-of-the-month snowpack observations
were obtained from the California Department of Water Resources Data
Exchange Center (cdec.water.ca.gov/) and the United States Department of
Agriculture National Resource Conservation Service (www.wcc.nrcs.usda.
gov/snow/). Duplicate colocated measurements between the two records
were removed, leaving 2,414 locations.

To create a gridded snowpack observation product for prediction system
validation over 1981–2016, observed values were separated for unique
months of interest, quality controlled, and gridded to native model grids.
First-of-the-month observations were averaged to create monthly averages
of observed snowpack (i.e., March 1 and April 1 measurements are averaged
to create a mean March snowpack value). For simplicity, we have chosen to
show March snowpack values across all of our analysis, which is when the
snowpack historically reaches the end of its accumulation phase across the
WUS (5). This also allows us to use the March 1 and April 1 station dates,
which are the most robustly sampled dates spatially across the WUS, for
optimal comparison with gridded model output. We next selected locations

with a minimum of 32 y of measurements (89% of years) to remove errors
generated from stations dropping in and out of the record. This is a con-
servative assumption for assessing snowpack trends (6, 44). This leaves us
with 1,136 stations in total, 136 above 49°N.

For 1981–2016, point observations provide the best available multi-
decadal data for analyzing snowpack prediction skill. Available longer-term
reanalysis products from data assimilation systems and precipitation station
observations have been shown to have negative biases in precipitation ac-
cumulation in mountainous regions, making SWE point observations a
useful independent measure of remote mountain precipitation (30, 45).
As more products become available with longer records, they can be in-
corporated into prediction system initialization and verification like that
from the Airborne Snow Observatory (46). We have used an additional re-
analysis product from University of California, Los Angeles (36), available
only over California from 1985 to the present, for additional verification.
Further details can be found in SI Appendix.

Regional analysis uses mountain ranges defined similarly to ref. 47, with
an additional criteria of mountain grid points in the AOGCMs having SWE in
the 1981–2016 simulated climatology exceeding 2 cm (SI Appendix, Fig. S1).
Unlike ref. 47, the Sierra Nevada has also been split into a northern and
southern portion. For mountain range snowpack comparisons (Fig. 3 and SI
Appendix, Fig. S7), snowpack was regridded to a common 50-km grid for
prediction analysis and consistency with Fig. 4.

Model Hindcasts. The model hindcasts presented are dynamically produced by
three GFDL AOGCMs: Coupled Model version 2.1, Forecast-Oriented Low
Ocean Resolution (FLOR) Model, and HiFLOR (High-Resolution FLOR), referred
to in the text as the 200-km, 50-km, and 25-km or low-, medium-, and high-
resolution models, respectively, for simplicity (22, 27, 28). These models share
common physics and ocean components, but differ in their horizontal reso-
lution of the atmosphere and land surface to conservatively use computational
resources for seasonal predictions. The lowest-resolution model (200 km) has a
similar atmospheric/land resolution to the typical Coupled Model Intercompari-
son Project phase 5 (CMIP5) model. The medium-resolution atmospheric/land
model configuration (50 km) has been shown to successfully reproduce the
hydroclimate seasonal cycle over High Mountain Asia, where CMIP5 models fail
to properly resolve complex topography (48). The highest-resolution configu-
ration (25 km) was first developed for tropical cyclone research, producing cat-
egory 4 and 5 storms, previously elusive at lower resolutions (28).

The 200- and 50-km models have provided operational seasonal predic-
tions for the North American Multimodel Ensemble, an operational pre-
diction system provided on a monthly basis for a limited number of variables
(1981 to present at www.cpc.ncep.noaa.gov/products/NMME) (13). This
prediction system and July 1 start date has previously shown promise for
seasonal prediction of tropical cyclones, with the highest-resolution model
outperforming its counterparts (27, 28). Each ensemble member was made
on July 1 for each year (1980–2015) and run for 12 mo to provide predictions
of March snowpack (1981–2016, available at http://data1.gfdl.noaa.gov). We
use the monthly mean SWE variable for each grid cell, which provides the
water equivalent depth of the total column of snow on the land surface.
Daily snowpack values are unavailable for the prediction experiments.

All models were initialized by using the same 12-member ensemble suite gen-
erated with the GFDL Ensemble Coupled Data Assimilation (ECDA) system (29) to
produce 1,224 model years. Each ensemble member provides unique ocean assim-
ilations from the ECDA to generate seasonal predictions with a coupled global cli-
mate model. The 200-km model is run with 10 ECDA ensemble members. The
number of ensemble members for the higher-resolution models (50 km and 25 km)
was increased to 12, given sensitivity testing for tropical cyclone prediction (28) and
the assumption that higher-resolution models need more ensemble members due
to greater internal variability (29). We did not increase the number of ensemble
members for the 200-km model, out of a desire for computational efficiency,
availability, and early analysis showing that 10 were sufficient (29). For the three
models described here, the lowest-resolution 200-km model used ∼750 computer
processing unit (CPU) h per model year to run for its 10-member ensemble. In-
creasing the resolution to a 12-member ensemble at 50 and 25 km corresponds to a
cost of 20,000 CPU h and 240,000 CPU h, respectively, per model year. To be clear,
these are computational costs on a super computer and not real-time hours.

For the 50-km model, the ECDA ensemble members are divided into three
subsets (1 through 4, 5 through 8, and 9 through 12) and are paired with three
separately generated atmospheric/land initial conditions for each year from
uncoupled (no dynamic ocean) atmosphere/land-only simulations for each
model forced by sea surface temperatures (49) and historic radiative forcing
values. For the 25-km model, the atmosphere/land components were initial-
ized by three separate initial conditions (for ensemble members 1 through 4,
5 through 8, and 9 through 12) taken from an arbitrary year from the control
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run simulation with fixed 1990 radiative forcing values, as an atmosphere-only
simulation was not available. For the highest-resolution model, this means that
the representative predictions come from the ocean state alone and may rep-
resent a lower bound on prediction skill. The assumption for this setup is that the
atmospheric/land initial conditions provide fewer degrees of freedom in long
multimonth seasonal predictions (8 mo here) than ocean initial conditions (42).
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